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SECTION I

INTRODUCTION

1. BACKGROUND

---t-'This report discusses the adaptation of a linear section of transmission

line to a time-domain code. Thelinear section is described by frequency-

domain parameters appropriately transformed into the time domain. On both

ends of the linear section, the time-domain code employs difference equa-

tions to describe regions which may exhibit a nonlinear response. The inter-

faces between the linear and potentially nonlinear sections of cable produce

boundary conditions joining the variant mathematical descriptions of the

regions.- -N

2. OBJECTIVES

(-This document reports on the formulation (in the time domain) of a

two-port representation for a linear transmission line, and the joining

of this result to a nonlinear, time-domain, transmission-line code.

In general, the nonlinearities can occur in two regions: The first,

or primary breakdown region, close to the burst, results from the high

intensity fields associated with the nuclear device. The second, or

secondary breakdown region, can occur at a discontinuity in the line far

from the area of detonation. These are caused by signals propagated by

the line and reflected at the discontinuity. These two regions are sep-

arated by a linear section of cable.

Of course, this central line section is quite compatible with the non-

linear codes; that is, the difference equations representing the transmission-

line equations are compatible with linear, as well as nonlinear, line

behavior. Unfortunately, however, the computational time, and thus the

computer c t, is greatly increased, due to the large number of spacial

increments w ich must be devoted to the linear section. The question
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naturally arises as to whether the difference equations for the linear sec-

tion can be replaced by a less time-consuming scheme.

As we shall show, the linear section can be replaced by a two-port

network section in the time domain. The most obvious formulation leads to
convolution integrals relating the input and output voltages and currents.

The convolution integrals, however, require an integration over all previous

time at each time step.

The convolution integrals can be replaced by equivalent, ordinary dif-

ferential equations. The advantage of this form is that the differential

equation solution can be numerically stepped forward at each time step,

based only on the value of the variables at the previous time step. Ob-

viously, this procedure is less time consuming that that of convolution,

particularly at long times.

In the following materials two approaches will be shown. The first

derives the convolution integrals which relate the currents and voltages

at the two ends of a linear transmission line, and the second approach derives

the differential equations relating the same quantities. Because the dif-

ferential equations are most easily formulated from rational polynomials in

frequency, the following method is used to achieve the desired representa-

tion.

The network parameters are irrational functions of frequency; so,

using Prony's method, we approximate the irrational functions by rational

ones. Then, introducing the concept of network state, the rational fre-

quency functions lead to a set of first-order, ordinary differential

equations relating the two-port voltages and currents. These equations

are in the desired form.

Finally, the state equations are integrated into the nonlinear dif-

ference equations to complete this goal.

6



To test the validity of the convolution integral and differential

equation concepts, comparisons are presented between the unmodified time-

domain code BLINE and the two approaches.

In section III, the convolution integrals for a lossless, linear line

*are incorporated into a modified time domain code and compared with the

results from BLINE. In this example, field strengths are limited to pro-

duce a linear result.

The first example of the differential equation procedure is shown in

section IV. Here, the transmission line is a coaxial cable driven from one

end, and again, is contrained to be linear. Comparisons with the solution

predicted by BLINE are shown.

The final example occurs in section V: it uses distributed sources

and the differential-equation approach to propagate a signal inducing sec-

ondary breakdown. A comparison is made with the results predicted by BLINE.

All the examples use the same format of modifying BLINE. Specifically,

the linear section appears as a single cell in the time-domain code inserted

between two regions described by difference equations.

I"I
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SECTION II

THEORY

1. THE TRANSMISSION LINE AS A TWO-PORT NETWORK

In this section, we consider the Laplace transform of the transmission

line equations and their general solution in terms of the input voltages

and currents.

The initial formulation is in terms of the two-port, general circuit

parameters (ref. 1) which express the output voltage and current in terms

of the input voltage and current. Since, for this problem, the admittance
formulation (ref. 1) is more convenient, the equations are rearranged to

this form. The admittance formulation expresses the input and output

currents in terms of the input and output voltages.

Transmission Line Equations

The Laplace transform of the single transmission line equations is

(ref. 2)

d Y(zs) 1 I 0 -Z(s)1 V(z s)1 + e(zs) 1
dz I(z,s) = -Y~) 0s1 I(z,s)+ i(z,s) (

or, in more compact notation,

dz
d- y(z,s) =A -"zs)+_(z,s)(2

we0 -Z(s)

where A= jY(s) 0

8



Z(s) and Y(s) are the series impedance per unit length and the

shunt impedance per unit length, respectively,

e(z,s) and i(z,s) are the distributed sources per unit length,

9(z,s) = [e(z,s), i(z,s)],

y(z,s) = [V(Zs), I(z,s)]

s is the Laplace variable.

The general solution to equation (2) is (ref. 3)

t A(z-zo  +ZeA(Z-c)

"(z,s) = e (zoS) Je (,s)d (3)

0

A(z-zo)
Here, e is an exponential matrix which will be determined shortly.

Equation (3) is the two-port, general circuit-parameter matrix (active

because of the source term) for the transmission line.

Since the eigenvalues of matrix A are distinct, the Sylvester ex-

pansion theorem (ref. 4) can be used to evaluate eA(zzo). The eigenvalues

of A are determined by

-A -Z(s)
=0 (4a)

-Y(s) -X

The two eigenvalues of A are therefore

A1 = /Y(S)Z'(s) = y
(4b)

2 - -VY(s)Z(s) = -Y

9



The Sylvester expansion theorm states that

tC)

e f (A.)Ft'A) (5)

where f(A) = e1 0

F =? 2 [A-XII

j=1
joi

t II is the identity matrix,

X.i are the elgenvalues of A.

14Substituting each equation (4b) into equation (5) yields

A~zF 1(- -ZO)
e(Zo 0 e 0(ZZO) 1 e-Y(z- 1 Z (6)

2 Y I z o]

e (z-z 0) + -Y(z-z) -y(z-z) -eY(Zzoz~)

2 2 z0

-y(z-zO) y(z-z0) y(z-z 0) -y(z-z0)
e -e Y0e+e

L2 02

where z- 1  s~

10
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A(z-z o)

The elements of the matrix e are the general circuit parameters

for a. two-port representation of a transmission line of length (z-zo). For

the problem at hand, the admittance formulation is more convenient, and can

easily be obtained by algebraic manipulation of the variables in equation (3).

Assuming the line is of length Z, the admittance form is

I 9(Zo,,s) ] V(Z,s) 1 + Ii(zo,,s) (7)
Iz (zo','s) [YI V(z's) 12(Zol',s)

0

0.

where eY +e Y9 -2
Y Yoe-yk_e Yk e -Yz-e Y Z

[Y]=

- Y Ye - e-Y-e Y

I ( IIIS t-e__yP ey Y G1(zo'k's) + G2(Zo't's)

12(o,,s =-YXe Yo 0G1(zo , 2s

e e

Gl(Zop,,s )"  0o
= ~ i AZ+ g(c's)dc

G 2 zo ,,s) o



2. TRANSFORMATION OF THE ADMITTANCE FORMULATION TO THE TIME DOMAIN

The admittance formulation of equation (7) can be expressed as

IX(Zols) = Y11(S)V(zs) + Y12 (s)V(zoS) + 11(zot,s)

(8)

I(zo(z,0 ,s) = Y21(s)V(Xs) + Y22(s)V(Zos) + 12(zots)

Here YII' YI2 ' Y21 and Y22 are the elements of matrix [Y].

Using the fact that the product of the Laplace transforms of two functions

is equivalent to their convolution in the time domain, equation (7) can be

directly converted to the time domain; that is,

t t

Sl(zo'l't) =f Yll(t-t')v(Lt')dt' +f yl2(t-t')V(Zo't')dt' +

(9)
tt

iz(zo'tt)=10 Y21 (t-t')v(tt')dt' +f Y22(t-t')v(zo't')dt I + i2(zo' 't)

Here, the lower-case letters stand for the inverse Laplace transforms of

their upper-case counterparts. In general, the inverse transforms of Yl1'

Y12 ' Y21 ' Y22, i1 and 12 cannot be obtained analytically, and must be ob-

tained numerically. The nature of the inverse transforms for the admittance

parameters will be discussed more fully in section 11.3. The inverse trans-

forms of the equivalent current sources 11 and 12 are discussed more fully

in section V.

Equation (9) is one form of the desired current-voltage relationship

in the time domain. In a numerical context, however, the convolution integrals

have a serious disadvantage; because, for each increment of time At, a num-

erical integration must be done over all previous time. Therefore, as time

progresses, the integrations become longer and longer.

12



As is known from the theory of linear differential equations, a con-

volution integral can represent the solution of a differential equation

(ref. 3). If the convolution integrals in equation (9) can be replaced by

equivalent differential equations; then, from a numerical standpoint, the

solution to the differential equations can be stepped forward in time,

based only on the value of the variable at that time. Thus, the computa-

tional requirements at each time step are greatly reduced from those re-

quired for convolution.

As we shall see, if the admittances in equation (8) are rational func-

tions of frequency (ratios of polynomials in frequency) then ordinary dif-

ferential equations can be obtained which replace the convolution integrals

(exactly) for all time. If these functions are irrational functions of

frequency (as is true in the present case), differential equations can be

*found which replace the convolution integrals, arbitrarily closely, for any

finite time. In the following material, we present a method to determine

these differential equations.

Prior to further consideration, it is convenient to transfer the source

terms, 11 and 12, to the left-hand side of equation (8), so that

I Y z1 ,s)-'i(Zo,,s) = Y11(s)V(s) + Y12 (s)V(z0,s)

(1.0)
I (z , ,s)-I 2(Zoi,s) = YI2(S)V(ts) + Y22(s)V(zos)

0

The motivation for this change is that the self and transfer admittances

of equation (10) describe the response of the system initially at rest.

Therefore, the left-hand side currents are those which result from driving

a system initially at rest with voltages V(Z,s) and V(z ,s).

Consider a typical term in equation (10), i.e.,

4 I(s) = Y(s)V(s) (11)

13



We assume initially that Y(s) is a rational fraction of the form

n n-1
II_ = Y(s) = N(s) bnsn+bn-1s n-o+"+b
V(s) D(s) ansn+an lsnl +...+a(

Note that the degree of the numerator can be at most equal to the degree

of the denominator. If such is the case, then the impulse response y(t)

corresponding to Y(s) contains an impulse of value b n/an . Indeed, for the
transmission line, this is the case. It is possible to extend this analysis

to cases where the degree of the numerator can exceed the degree of the

denominator; however, such an extension is not necessary here.

Following reference (3), we postulate that the differential equation11J relating i(t) and v(t), in equation (10), is

dn dn-1
andn + an-I -1tn (t) +'."+ao1(t)

(13)

- bn d v(t) + bn 1 dn v(t) +...+bov(t)

dt 0t

The Laplace transform of equation (13) should be reducable to equation (12).

The Laplace transform of equation (13) is

an sn (s) -s l (o) sn-2 d i(o) ... n-1 (o)

+ an-1 sn-1(s) sn-21(o) sn-3 d (o) .... i(o)n-d dtn-2

14



Sb sn V(s)-sn-lv(o)_sn-2 dv(o)... n- v
n F dt n-1

dtn" ~)

(14)

b sn- (s)-sn'2v(o)-sn-3d o. dn-2 v(o) 1

Solving equation (14) for I(s), the result is

I(s) 1(s V(s) + D1s s n-1a i(o)-b V(o]

+ sn-2 [a d i(o) - b - v(o)+anli(o)- bniV(o]

(15)

+[ d n-1i(o) - b n  v(o) +--.+ali(O)-blV(O
n~ dtn-1 n J)n-

Here N(s) and D(s) are defined in equation (12).

If the transfer function of the system is to be that of equation (12);

i.e.,

I(s) -- NL sv(s)
4M

then all other terms in equation (15) must be equal to zero. These con-

ditions form the interrelationship among the initial conditions on the

variables. However, rather than using these initial conditions directly

(v(t) is the source and i(t) the response), it is more convenient to make

use of the concept of system state.

V
15



Basically, the state of a system is a property of the system which,

together with system inputs, determine the future state of the system.

For present purposes, the state can be a set of new vdriables defined as

linear combinations of the original variables, i(t) and v(t), and their

derivatives. Since the transmission line is initially at rest, and the

fact that we wish equation (15) to follow from equation (14), a very con-

venient definition* of the state variables xi(t) is

x 1(M = an i(t)b n v(t)

x2(t) = an L i(t)-bn L v(t)+anli(t)-biV(t) (16)

n dn n d n-1 -

dn-i dn-l
Xn(t) = an n i(t)-bn .tn1 v(t) +.-. I+ai(t) - b1V(t)

It is easily seen that if the initial state (xl(o), x2 (o),...,Xn(o)) is

zero, then equation (11) will result from equation (15). We have thus

arrived at a set of variables whose initial value is zero, and which re-

sults in the desired relationship.

We now determine the differential equations which these new state

variables must satisfy.

Equation (16) can be written

x1(t) = ani(t) - bnv(t)

dx2(t) = t xl(t) + an-ll(t) - bn-lv(t) (17)

Xn (t) = L Xn_(t) + a i(t) - blV(t)

* System state is not unique.

16



The last state variable x n(t) in equation (16) can be combined with

equation (13) to yield

dd

Finally, solving equations (17) and (18) in terms of 1 xk) and

i(t), and using the first relationship in equation (17); i.e.,

'1 (t) L=
d(t + -A) = ~

nn nn inn

atXn(t) L a {ax(t)+a an n-x (t)+(a b n--a b n)v( t

dt n - -al1t a x(t)+(a b-l
dt_ x () -a1 n n aobn )v~t

di(t) = L-{ a1 t x+b(t)}( vt

Equation (19) is a set of first-order, ordinary, differential equations,
which with zero initial conditions, describe the desired voltage current
relationship between i(t) and v(t).

17



3. IRRATIONAL ADMITTANCE ELEMENTS

In the previous section, a technique is described which replaced a

convolution integral with a set of ordinary differential equations. The

method is useful, however, only if the individual admittance elements are

rational functions of frequency.

For the transmission line, the admittance elements are irrational

functions of frequency, so it is necessary to approximate them by rational

ones, if this method is to be used. There are many ways to make this

approximation (see, for example, reference 5). A particularly convenient

method and the one that is used here, is Prony's method (ref. 6).

Using Prony's algorithm, it is possible to represent a time function,

arbitrarily closely over any finite time, by a finite sum of decaying
sinusoids*. Thus, the representation

1N sit
f(t) A i e (20)

i=1

is obtained. The Laplace transform of this expression is
N

F(s) = Ljf(t' = A (21)
i=1 s si

which is a rational function.

To use the Prony procedure it is necessary to inverse transform the

admittance functions. For the transmission line, most of the admittance

functions are sufficiently complex that the inversion must be done numer-

ically. In addition, these inverse transforms contain impulses. The

value of these impulses must be removed before numerical inversion.

* Simple decaying exponentials are included.

18



F' To illustrate the procedure, consider the characteristic admittance

of a transmission line with lumped series resistance and inductance and

only shunt capacitance (perfect dielectric). The characteristic admittance

for this line is

Yo(S ) = - L (22)

We note that

lim Y(s)

4S-N

and since the Laplace transform of an impulse is a constant, the inverse

transform of Y0(s) contains an impulse of value ._ Therefore, if

we were to numerically inverse transform Yo(s), we would remove this im-

pulse and inverse transform

Y-(S) Y (S) 1'LR+C~ (23)

The prony procedure would then be applied to the result. Of course, an

impulse of value C would then be added to the exponential approximation

of equation (20).

It turns out that equation (22) can be analytically inverse trans-

formed, however, and the result is

Y 0 Mit 0(FL 0(24)

The impulse occurs in equation (24), because of the unit discontinuity of

the expression in parenthesis at the origin.

19



Equation (24) cannot be entirely represented by a sum of simple expo-

nentials. However, a Prony procedure applied to the first 30 microseconds

of this function with the values

R = 1.3611 x 10-2 ohms/meter

L = 5.8322 x 10-8 henry/meter

C = 4.3878 x 10-10 farad/meter

indicates that two simple poles form a good approximation.

The following poles and residues result from the Prony analysis:

Pole Residue

-5.7362x104  1.826x103

-2.0056x10 5  8.298x10 3

A comparison of the resulting approximate function with the original ir-

rational function is shown in figure 1. Actually all values are within

.1% except for the last several values which are within 1%.

The approximation to Y (t) is then

Yo(t) =#-4E6(t)+1.826x103Exp(-5.7362x10 4t)+8.298x10 3Exp(-2.0056x105t)

Here the impulse has been added to complete the expression. The Laplace

transform of this function will form a rational approximation to Yo(s).

20



.9

7 - IRRATIONAL FUNCTION

x PRONY FIT

.4

.3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

TIME (Pas)

Figure 1. Comparison of Irrational Function With
A Two Exponential Approximation
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4. ANALYSIS OF THE ADMITTANCE MATRIX

It is instructive to analyze the admittance matrix [Y] in equation (7)

in more detail, by expanding the individual elements in the following way:

e~~ ~ -k+-9 1+e-2 yk

e -e 1-e-2

= (l+e-2Y)(l+e- Y+e-4 +...) y0(2ao '' (25a)

-= (1+2e-2Y+2e'4Y+.) y
0

" 2 y0 = _2- le2 e4 .. y

!i= -2(e-Y +e-3Y +e-Y+--.) Yo  (25b)

Therefore, the admittance matrix can be expressed as

[Y] = Y+2ek [ 1 Y 0 +2e
2
'j [ Yo+.. " (25c)

•0 1 -1 0 01

We note that the multiplicative factors of 2 in this expression are due to

the fact that this is a short-circuit admittance matrix, and the current

reflection coefficient under short-circuit conditions is 2.

Due to the multiplicative factors of e'nY1(n=0,1,2,...) in equation (25),

each matrix in the sum undergoes a delay (in the time domain) of multiples

of a line length delay. If the line is lossy, this delay is of course

dispersive; nevertheless, it is there. Therefore, the problem can be sub-

divided (time-wise) into a number of distinct parts, each of which is

additive to the total result. Furthermore, since we are usually interested
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in results on the transmission line for a fairly short time, only the first

several of the terms in equation (25) need be considered.

As an example to illustrate the time behavior of equation (25), we

consider a lossless transmission line of length Z with parameters C and L.

In this case,

fo L
Y qJL = s v'C

t so that the exponential factors represent only time delay; i.e., multi-

plication of a Laplace transform by e st0 delays the ensuing time function

by to.'

1 Since Y = is constant, its inverse transform is an impulse of

value Therefore, the inverse transform of equation (25) is

l Y(t)JI= [_6(t) 0()1I C F+ - 06(t-t o + 6(t-t0 1 ~ [6t2to 0 ( 0 h +-(26)
0 6(t -6(t-to0) 0 0 6(t-2t 0 WE

In this equation, to = Vi[ Z.

Each term in equation (26) is a simple impulse, so that the convolution

integrals in equation (9) are easily evaluated. The result is

i(k,t) ='L{-v(k,t)+2v(zo,t-to)-2v(kt-2to)+ . + il(t,t)

(27)

i(zot) =VIT V(Zo,t)-2v(Z,t-to)+2v(zo t-2t ... }+ i2 (pt)
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Equation (27), then, is the current-voltage relationship for a lossless

line. In this expression all voltages are zero if t-kt is neoative. In

section III a different derivation of the voltage and current relationship

and numerical results are presented for a lossless transmission line.

When the line is not lossless, the inverse transform of equation (25c)

is more complex. In general, each term contains an impulse plus a dis-

persive term, so that the convolution integrals must be numerically eval-

uated.

5. BURIED CABLE CONSIDERATIONS

The motivating problem for this study requires that we determine the

voltage across the dielectric of a buried, insulated conductor; that is,

we must determine the dielectric voltage to determine dielectric breakdown.

In the previous sections, we have analyzed the behavior of a single trans-

mission line, with no special consideration for the dielectric portion of

the total line voltage. It is the purpose of this section to present the

procedures to be followed to determine the dielectric voltage.

It is common practice in the analysis of buried cables to represent

the dielectric and ground in the way illustrated in figure 2. Typically,

Y and Y each consist of a parallel resistor-capacitor combination; so

that, in the time domain, the transmission line equations can be written

a(Vd+Vg) = - L - Ri + Einc(zt)az at i t

z - at -gg
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Here, the subscripts d and g refer to dielectric and soil, respectively.

UNIT LENGTH OF BURIED

TRANSMISSION LINE

. V

: ~.Z = SERIES IMPEDANCE/UNIT LENGTH

.1 
Y = SHUNT ADMITTANCE/UNIT LENGTH OF THE 

DIELECTRIC

Yg = SHUNT ADMITTANCE/UNIT LENGTH 
OF THE GROUND

Figure 2. Section of Buried, Insulated Conductor

Indeed, the present nonlinear, time-domain, 
difference equations are re-

presentations of these partial differential equations.

To proceed, we again resort to the 
Laplace transform versions of the

single transmission line equations 
which are

3v d d
@V _ ZA

az

S_1 

(29)
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• Here, however, to conform to figure 2, the line parameter Y is the series

combination of Y and Yg; i.e.,

7- T + Y
Y Yg

-- Yd+Yg

Now the dielectric voltage can be written in terms of line voltage

as follows:

Y d V Y
___=___ ___-q-Vd = V I + d V 9P __ Y_ Y +

Yd Y g

14 Therefore, in terms of dielectric voltage Vd, the total line voltage V is

V Vd (30)

Similarly, the line voltage V can be expressed in terms of ground voltage

Vg; that is,

Y~d + Yg ~(1V - d Vg (31)

Expressions (29) and (30) are the desired relationships to convert from

Vd or Vg to V and vice-versa. However, since V = Vd + Vg, it is only

necessary to use one of these expressions. Both of these expressions are

Laplace transforms, so that, in general, the methods of parts 3 and 4 of

section must be used to obtain the corresponding time domain relationships.

We mention in passing that the transmission line equations can be

written silely in terms of dielectric voltage Vd. This is accomplished

by substituting equation (29) into the transmission line equation (28);

the result is
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aI Vd YVZ

3z d + Y -Z'I

(32)

yz

where 2' = Yd + Y g

Equation (31), while having different line parameters than equation

(28), has the same propagation constant. Therefore, the linear section

P_ of transmission line can be modeled either with total voltage, or with

dielectric voltage.
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SECTION III

LOSSLESS LINEAR SECTION

1. LIMITATIONS OF THE APPLICATION

This section of the report uses the straightforward approach of con-

volution integrals (equation 9) to find the relationship between the

currents and voltages at the ends of the linear insert. With no distri-

buted sources, equation (9) becomes

t t
* i(z°'t) o Y1 l(t-t')v(,t'l)dt'+O yl2 (t-t')V(Zo t)dt' (33a)

0 0

t ti( ,) = 0 Y1(t'')v 't)dt'+ O Y2(t-t')v(z° t)dt' (33b)

:0 0
To calculate the admittance matrix as a function of time, the inverse

Fourier transform of the frequency representation must be found. As dis-

cussed in section 11.3, both the self and transfer admittances contain im-

pulses; as a result, if the impulses are not removed, the inverse Fourier

transform is not defined. Another method to find the current-voltage

relationship is the following. Examining only the first integral in

equation (33a),

t

f yl,(t-t')v(9,t')dt = F- 1 (Y1 1 (s)V(ks))

0 (34)

-F [( (sV(zS))J= F-1 [Yi1(s)m('s)J
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The quantity Yii(s), has no impulse behavior and therefore a well defined

inverse Fourier transform; it contains instead, discontinuities in the time

domain. The voltage part of the integral, V(t,s), simply represents the

time-domain derivative of the voltage. The equation now appears ast t
Yll(t-t')v(Z,t')dt = f (t-t') -v(k,t')dt' (35)

0 0

The other elements of the admittance matrix, Y12 (t), Y21 (t), and Y22(t)

will have properties similar to Y11(t); the following discussion of y11 (t)

can be applied to all other admittance terms and their contributions to the

currents.

The time behavior of y11(t) consists of a discontinuity at t = 0

(t = YL, one delay length for the transfer admittance terms) and at each

subsequent 2nY. Between the discontinuities at the reflection times,

Y11(t)is monotonically increasing. If the line is lossy, then in the limit

as t y11 (t) = constant. If the line is not lossy, the monotonic sections

are flat, the discontinuities do not diminish with time, and there is no

limit to y11(t).

The only case analyzed with the admittance matrix in this form was

for a lossless line; the size of the discontinuity was then a constant

equal to the characteristic admittance of the line (occuring at t = 0 and

each two line delay lengths). In this form it was possible to include all

reflection terms and signals propagating in both directions.

2. ADAPTATION TO BLINE

The junction of the linear section with the sections described by dif-

ference equations employs the solution of the dielectric and ground voltages

at the junction points. The transmission-line equations (equations 28)

employed by BLINE are

29



S-=.(Vd+Vg) = -L -R i (35a)az~~vd  a C

ai _Cd a- Gdvd (35b)

ai -C at G (35c)
-cg9at gg9

when no sources are included.

*; An examination of figure 3 shows the spatial difference equation for

the current employing the self and transfer impedances is

31 2 (1 -

5z z j+2 1j+1+

t

- 2 j+2 -J Y21(t-t') t.'' (36a)

0

- Y2 (t-t ') v t') dt')

0

on the right end of the linear section (j+2) and

I ( - )
az A -

= 2 - av(z, ttt dt'Az f ;,t l dt, (3b

0
t

+ ;12(t't )  at' I /
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v1  11 V2 12 Vji I~ Vj+1  j+2 Ij+2 v J+3  n

Figure 3. Placement of Current and Voltage Cells in
BLINE and the Linear Insert in BLINE

on the left end (j+1). In both cases v is the total voltage as given

in section 11.1.

Approximating the convolution integrals as

t v(z ,t') n 2-

~fy(t-t') dt' y n2k-v 1  (37)

0 k: 1

where the k and n indices represent time; equations (36a), (35b), and (35c)

then give the boundary conditions on the right side of the linear section

Vd G d _ Y22 Vn+1 Y~22 (38a)
dj+2 ( t 2 tAz gj2A

and V (C Gd2 T' 22)z- v gn Z

n+1+2

C G1
=Vn -A& -a -22\ Vn Y'22+ (3b
g+ At 2 Yz dj+2  Ax 2(3b
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r

p4

where the quantities subscripted by d and g indicate capacitances, conduc-

tances and voltages across the dielectric and ground and

nS n+1 +2-k (v k k-1 n+1-
[2 fy 1 I +L.Y2 EV+ - I n

2 J+ k=2 j+c j+ ( )

1*n+1 0 + n+2-k' jk _V~- +

S: k=2t

where V = Vg + Vd.

The equations (36b), (35b), and (35c) give the left end boundary con-

ditions of the linear section,

v n+1Cd Gd YI1) V n+1 Y1l

dj+ At 2 Az gj+l Az

Atg(39a)

dj+l AZ

and

+ At 2 n+l 1

(39b)

=Vn 19 n -1 + nS
gj+l\At A z
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where

V n
_ = 2 ln+l1 n+2-k V k-11 2 12 2 j+2 1 j+2

k=2

k=2 (Vk -+~)- +1 (3c

The resulting boundary conditions are simultaneous equations in Vn+1
and Vn+ 1

d

3. COMPARISON WITH BLINE

The comparison problem run by BLINE and BLINE modified by the convol-

ution-integral approach consisted of a 201 meter cable; the linear insert

consisted of the center one meter. The other parameters are shown in

in table 1.

TABLE 1

rI  Core radius 2.5x10"2m

r2  Dielectric radius 2.627x10-2m

Es Soil dielectric constant 10 Co farads/meter

as  Soil conductivity 10-3 mhos/meter

Fd Sheath dielectric constant 2.3 co farads/meter

The observation points used in both analyses are at the two ends of

the cable. The line was pulsed by a voltage excitation at the left end

of the line with

V(t) = 1.0 - e-107t  (40)
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-Figure 4 shows the total voltage as a function of time predicted by

BLINE and BLINE with the modification of the 1 meter linear section.

Figure 5 compares the total voltage at the end of the cable opposite

kfrom the source.

The voltage comparison at the source end of the cable shows that no

reflection occurs at the interface between the linear and difference-
equation described sections. The voltages at the far end of the cable
show a lower amplitude after the pulse travels through the linear section

* when compared to the unmodified BLINE predictions; the cause of this dis-

crepancy is presently unknown.
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I2

.4 J

0BLINE with 1 m Insert *9 e

BLINE

0..81.2 1.6 2.0

Time (uis)

Figure 4. Predicted Voltage at the
Source End of the Cable
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10 2

BLINE with 1 m Insert*.e
BL INE-

101

1.'

10 0

101
2. 2.4 2.8 3.2 3.6 4.0

Time (uis)

Figure 5. Predicted Voltage at the
Load End of the Cable
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SECTION IV

LINEAR SECTION IN A COAXIAL LINE

1. LIMITATIONS OF THE APPLICATION

The reason for the insertion of a linear section into the analysis

is to save the computer time necessary to propagate the signal in the

linear section. In this region, the time domain analysis is not necessary

since no breakdowns are expected; parameters linking the voltages and

currents at the ends of the linear section are all that are necessary.

t ;Also, since the prediction of secondary breakdown phenomena is desired,

one actually needs only the signal propagating from the source through

the linear section. In the region of secondary breakdown, this signal is

used to drive the nonlinear section and, analyzed by the time domain code,

can reflect from the end of the line causing nonlinearities. This reflected

signal, returning to the source region, cannot reasonably be expected to
4- traverse the entire cable and add nonlinearities to the primary break-

down region; in this analysis its presence in the linear region is ig-

nored.

Examining only the first pulse from the source end of the line, the

current and voltage relationships from equation (25c) are

I(Zs) -Y0 V(k,s) + 2e
-Y  Y0 V(z0 's) (41a)

I(z 0S) =V 0 V(Z 's) (41b)

This form is used since all subsequent admittance terms in equation (25c)

represent delay lengths associated with signals propagating toward the

source and their reflections. The terms of the admittance matrix which

are present are: the self admittance for both I(Z,s) and I(z ,S) and the

transfer admittance delayed by one line length for I(t,s).
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The analysis of a coaxial line was chosen as the next step in order to

introduce losses into the linear section via a nonzero resistance of the

center conductor. The shield was chosen to have a zero resistance so the

entire system would be represented by a single voltage; ordinarily, the

calculation of two voltages are necessary, one across the dielectric and

one across the soil. Inserting a large soil conductivity into the time

L domain code, resulted in the approximation of a coaxial cable with no

shield resistance and no voltage drop across the soil.

Constant R, L, G, and C (section 1.3) parameters were also used in

the analysis to allow the subsequent steps in the development of the pro-

Scedure to be more easily understood.

2.' PRONY REPRESENTATION OF THE ADMITTANCES

I The representation of Y0 by an impulse term and decaying sinusoids

was shown in section 1.3. The procedure to find the representation of the

transfer admittance term is identical. First, the impulse must be identified

and handled appropriately.

Assuming the coaxial cable contains only a shunt capacitance term, the

characteristic admittance and propagation constant are

Yo( s s: S L  (42a)

Y(s) :VsC(R+sL) (42b)

At high frequencies, the limits of these are
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im Yo(S) CIE (43a)

lrn Y (s) R ICE- -s VW (43b). 2

Thus the impulses of the admittances are

Impulse (Y0) =17C (44a)

and

Impulse (2e-YY) = 2 I exp[-( R )- s Vi-)j (44b)

j Next, the Prony process is applied to

F-1 [Yo(s) 47 (45a)

and the transfer admittance advanced by one delay length,

F-1  2e-Y Y- 2j 7 exp( R -{. F.T-' s Z)I e'-S ) Ie (45b)

It is worthwhile to notice here that the Prony results of the self

admittance term are independent of the line length, whereas the transfer

admittance term is a function of the line length. The Prony analysis is

done on the transfer admittance advanced by one delay length to reduce

the number of poles necessary to achieve an adequate fit. The inverse

transform of the transfer admittance is near zero until one delay length

in time; at that time, the admittance is discontinuous to a finite value

after which it decays. This type of time function can be represented by

a sum of decaying exponentials, but far fewer poles are required if the

discontinuity in the funciton is shifted back to the time origin.
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Another difficulty arises in the inverse transform of a discontinuous

function; Gibbs' phenomenon is present in the transform resulting in an

inaccurate answer at the time origin. Two approaches are used to reduce

this effect: the first is to calculate the frequency domain function to

r frequencies far higher than would appear necessary to resolve the actual

behavior, flO11 Hz. This increases the Gibbs' oscillation frequency and

decreases the decay time. The second method is to analytically calculate

the inverse transform at t = 0. This can be accomplished by taking the

limit,

, lim sF(s) = f(o+) (46)

where f(t) is the inverse transform of F(s). These limits for the ad-

*I mittances are

1-im s -Y0 (s) + =)(47a)

and

lim .{s [_2e-"Yo(s)+ 21 exp -( R -s n'
1FL 2 L (47b)

2L e8~s~T L exp(.R~ 1 )
Again, the delay time, 4iiC shows in the limit of the transfer admittance.

Using the limit as s goes to infinity of sF(s) as the value of f(o),

the two admittances were approximated by the Prony program as

Y St s2t
F-I z ale + a2e (48a)
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or

Yo(s) a - 2  (48b)
0 ss1 S-2

where a = 1.82602xl03 a2 = 8.29867xi0 3

sI = -5.7362x10
4  s2 = -2.00559x105

and

F- I -2e-y'Yo(s) + 2' exp -21R - s JL)cn

s It s2t (49a)a aI e +a 2

or

I 2e-Y Yo(S) 2 exp R - - k

1 1 a2 (49b)

Ss-si s-s 2

where

a1 = 1.9269x10 3  a2 = 5.98615x10 3

SI -4.68392xi04  s2 = -1.93015xi0 5 .

The values of the two impulse terms were

Impulse (Yo) = 8.6737x10
-2

and

Impulse I2e
-yk Yo(S)l = 9.6134x10

-2

In both cases, a fit using two poles and residues achieved an error of

less than one percent at all except the last two time points.
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The admittances can now be represented by ratios of polynomials in s,

Y()=Nils 2+N 12s + N13 (5a
O ils 2 + D 1 s + D 1 3a

and 2

2e-~Yk (s) -- N21 s2 + 22 s+N23 (50b)
0215 + D225 + D23

where the numerator and denominator in both cases are ofthe same order in

s because of the impulses present (section 11.2) . The transfer admittance

is understood to be delayed in time by one line length.

With the ratios of polynomials known for the two admittances, the state

equations can be derived. From section 11.2, the state equations and

I $ initial conditions are

x11(O =0x 12(0) = 0

X21(0) =0, x22(0) = 0

'x1 - 0 1 1 + X12+ (N,, -N11  D~) (60a)

013 0 N l 13 v (60b)
12 -h- 11 +~ 13 -N 11 w

2 2 1+ x2+ (N22 - N2  D22 )v (60c)D 021 D

x23 + (N 23  )vN2  (60d)
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where the first subscript refers to the self admittance (1) or the transfer

admittance (2). The current as a function of the voltage is now given by

i D 11 v (self admittance) (61a)

for the self admittance part and

D21 - N2  v (transfer admittance) (61b)

for the transfer admittance portion. The quantity v represents the voltage
delayed by one propagation length of the linear section. Because there is

interest in only the signal propagating from the source in the linear portion,

the voltage-current relationship is given by only equation (61a) for the end

of the linear section nearest the source. At the other end of the linear

section, the voltage-current relationship is represented by the sum of the

two current contributions.

3. ADAPTATION TO BLINE

The reason for the formulation of the equations giving current as a

function of voltage was compatibility with BLINE. The boundary conditions

in BLINE always employ a current as a function of voltage.

The solution of the state equations is easily realizable in BLINE

using the formulation

x(t+At) x(t) + k(t)At. (62a)

This gives

x11 (t+At) = x11(t) (1 D 1 At )+ x12(t)At

(62b)

( N N1 2 At v(t)
(N12 -N il
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~~~D 13 Xlt

x12(t+At) = x12(t) D13 (u-c)

IT (62c)

x21(t+At) = x21(t) (I- D  22 +

+ N22 - N21 D2 (t) (62d)

t and
x22(t+t) = x22(t)- D2 3

221  (62e)

- N21  At v(t)

The current is now found from

i(t+At) - xI X(t+Lt) + (t+t) (62f)

-for the self admittance current contribution and

i(t+At) = 0 x21 (t+At) + 2 (t+At) (62g)
21 D21

for the transfer admittance current contribution.

In the case of a coaxial cable, the voltage across the shield is zero

and only the dielectric voltage remains. The boundary condition present

in BLINE can then be derived from equation (28b) of the transmission line

equations,
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Sv GdV (63)Bi- = -Cd @

An examination of figure 3, which shows the relative placement of the

current and voltage cells at the source end of the linear section in

BLINE, indicates that equation (63) can be differenced as

2 (In+l e+ Cd n+l n !d (.n+l + )A-x j ~~ ~~-2 =  Vj+I Vj+I -v+ jI(4

where the superscript designates the time index, the subscript the position

index and

N
in+ 1 n- N+1+ll vn+1ij+ , = IlX1n 1l D- jl (65)

is the current-voltage relationship at the source end of the linear section.

This gives the voltage at the source end of the linear section as

__ GdNj+1 At+ 2-- Ax Dll) Vj+I t

(66)

+ 2 (n+1 I xiin+1)

A similar analysis at the far end of the linear section shows

n+1 (Cd Gd 2 Nll n (Cd _d d)

Vj+2 At+ T- Tx U 1 Vj+2 ( -
(67)

2 ( -n+l 1 xn+l 1  n+ N2 1  zn+l)Tx.. jV 1 D j+I/

11 11 21 D21

which uses a current at the far end of the linear section of

in+l _ 1 n+l +Nil .n+l + 1 n+l + N21  -n+1
j+2- 1l l1 +11 v j+2 D2 1X21  D2 1  vj+ I  (68)
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The voltage term V is the voltage occuring at the source end of the linear

section. V has been time delayed by the length of time it takes the signal

to propagate along the linear section of the cable.

These voltage and current relations were then put into BLINE relating

two adjacent voltages. The effect of this was to separate the two cells

by the length of the inserted linear section.

4. COMPARISON WITH BLINEI To compare the approximation of a linear section by the differential

equations, the following problem was run by the new method and BLINE. A

coaxial cable was chosen with the parameters

R = .013611 ohms/meter

L = 5.8327x10-8 henries/meter

G =0.0

C = 4.3878x10 -10 farads/meter.

These were derived from the physical parameters

r1 = 6.35xi0
"3 m

1 -3
r2 = 8.5xi0

"3 m

cc = 5.8x10
5 mhos/meter

ed = 2.3 Eo farads/meter

where r, and r2 are the radius of the core and dielectric, cc is the con-

ductivity of the core, and ed is the dielectric constant of the core in-

sulation.

A transmission line of 1.2 km length with these parameters was driven

at one end with a triangular voltage pulse of one volt amplitude and

0.5 Usec duration. For the first comparison, the spatial cell size was

chosen to be 10 m and observation points were made at distances of 100 m

and 1100 m. The section of line represented by the differential equations
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was 1 km in length and was inserted between two 100 m sections. The ob-

servation points were taken at the two ends of the 1 km insert. The rep-

resentation of this section used the poles and residues discussed in

section 111.3.

Figure 6 shows two voltages: one predicted by BLINE 100 m from the

source end and the other predicted by the modified BLINE code at the same

place. Figure 7 shows the voltages predicted by BLINE and the modified

BLINE code at the junction of the insert 1.1 km from the source. It can

be seen that this agreement is not good when BLINE uses a cell spacing of

10 m, but improves when the spacing is reduced to 5 m.

The discrepancy is probably due to the superior description of the

transfer admittance by the differential-equation technique; agreement

probably occurs in the limit as the cell spacing goes to zero. This is

shown by the 5 m cell spacing resulting in a pulse more closely resemblinq

the pulse of the differential-equation approach.
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SECTION V

LINEAR SECTION IN A BURIED CABLE

To model a realistic situation of cable breakdown, two more effects

must be included. The first is to add a voltage drop across the soil so

the entire voltage is not across the cable dielectric. The second addi-

tion is the effect of a distributed source along the linear insert. With
£these additions, the regions of primary and secondary breakdown separated

by a linear length of cable can be described by the differential-equation

technique and compared to the predictions of the unmodified time-domain

code, BLINE.

1. DISTRIBUTED SOURCES

In the formulation described in section II, the effect of the dis-

tributed sources is to add currents at the ends of the linear insert

(equation (7)). The solution of the differential equations then repre-

sents the sum of the currents induced by the distributed sources and the

currents resulting from signals propagating to the linear section

(equation (10)).

In the frequency domain, it is convenient to represent the E-field

excitation of equation (2) as

e(z,s) =- An(s)e ian (s)z (69)
n

The current sources will be assumed to be zero.

For a general E-field, as a function of time, the Fourier transform

has to be accomplished numerically to achieve the frequency domain repre-

sentation of equation (69). However, if the field as a time function is

a sum of double exponentials, the Fourier transform can be found analyti-

cally; in this case,
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E(z,t) c e gn(- 0 (e n (t -r ) b en (t-Tn) (70)

where c~ is the amplitude, g~ is the spatial decay constant, Tis the
41 time delay, R0 is the data range, and a and b are the temporal decay0 n n
P. constants of the double exponential. The Fourier transform of this

field gives

gR z(I g ST __ ___

e(z,s) ~ c e no e - e5T n (n s b bn ) (71)
n

- which gives

A n(s) c e nRo0 eST n (n 1 6 (72a)

and

a(S) - + ig, (72b)

by comparision with equation (69).

With the distributed source in the form of equation (69), the integra-
tion over the length of the linear insert can be easily accomplished;
from equation (7), the integrals are

Z+t

G(z 2zs O f e Y(0+22 Y(Zo+ ~ e Z ~ dC (73a)
1 00

or

G (z0,Pts) ZAn ;e2  2  icn e n + ian cosh('Y9

n n ] (73b)
+ Y si nh(Yt)

51



'low"

and

e- r Y(z 0+ t  ~Y(zo0 +
G Zs') Y0 2 Ane dC (74a)

20orzo n

200

G icz AihY) y(7Y4bn+)fcoh~
n n

The currents which must be added to account for the distributed sources

along the linear section are then

lo ~ e~ - ey 4z- n~2+~F~e

+ A e2 2c 2 z o -"e 0Ln + Y cosh(Yk) + i,% si nh(YZ411 (75a)

nl n
and

2Y( no Liz rZ
12 ( 0  e- ,s) e Y' - E LiAn .2 + L(

n n

+ 1an cosh(Y2Z) + y sinh(Yk)j (75b)

At this time it is useful to display the sources in a manner similar

to the admittance formulation in equation (25); the terms as functions
of the delay lengths are
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An Y o ein(zo+)

I (Zo, 9,s) 2 2 e Y- ian (1 + 2e-2T
++c+

n n
--- ~~~ ~ ! i -~oYt 2te-Y
.+ 21a ne nI o' e- + + ...)+ (76a)

and

S12 (Zo41s) A 2 Y2 Y + in 1 (I + 2e- 2Y+ 2e-4Y9 +

n n
"(in-Y)t -2Y9. 2-4~

-2ane (1 + 2e +2e + "-) (76b)

These show that the first term of 1, the current addition at the end

of the linear section farthest from the source, has a delay of icn(zo+Z),

the light travel time from the source to the far end of the linear section.

The next term of I has a delay of ianZo- Yt, the light travel time to the

near end of the linear section plus the propagation time along the linear

section. All other terms are equivalent to reflections at the ends of

the linear sections with subsequent additional delays of 2nYZ.

The first term of 12, the current addition at the end of the linear

section closest to the source, has a delay of ianzo , the light travel time

from the source to that end of the linear section. The next term of 11

has an additional delay of (ia n- y); this represents the delay of light

traveling from the near to the far end of the linear section plus the

propagation delay along the cable back to the near end.

As in section IV, the interest in predicting secondary breakdown only

necessitates the use of those terms representing signals propagating away

from the source. With this restriction, the sources can be approximated as
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n(z s) e eld n 0z02 (Y-in) + 2ine 0 (77a)1('' 0 ac2 + Y2n
n n

and

2s) A + y2  (Y + icon) (77b)

n n

2. ADAPTATION TO BLINE

Two further modifications to the code used in the analysis of the

previous section were necessary. The first involved the addition of the

source terms I, and 12 into the boundary conditions at the ends of the

linear section. The second was the calculation of the dielectric and

soil voltages at the ends of the linear section. The voltage propagated

through the linear section is the total voltage, the sum of the dielectric

and soil voltages, which necessitates the separation of the two at the

boundaries of the linear and nonlinear sections.

"C Because of time limitations, a case was chosen where the soil con-

ductivity was zero; the ultimate reality of this case was accomplished

by choosing lumped parameters R, L, and C identical to those of a realis-

tic case with frequency dependent parameters at a given frequency; the

parameters were then assumed to be constant. The reason for choosing

the soil conductance equal to zero was to allow a simple relationship

between the dielectric and soil voltages. From figure 2, it can be

seen that this relationship is

V =-V (78a)
g Cg

and

Vd Cg V (78b)
d Cg + Cd
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where V is the total voltage and the d and g subscripts refer to the

dielectric and ground.

The capacitance across the ground, Cg, was calculated by assuming that

the total capacitance, C, of the realistic calculation was the result of

the soil and dielectric capacitances in series.

The boundary conditions at the junction of the linear and nonlinear

sections are modifications of equations (66) and (67) including the cur-

rent source and voltage fraction Vd/V. The dielectric and ground voltages

were found from

nVd ( 2 N11  =Vdn (Cd\
dj 1  Ax D., VF d
j+1+

xn+1
2 I n+1 X11  _ 2+ sn+1 (79a)
+~~x* \JD 1 1  n1- 2

at the end of the linear section nearest the source and

V n+1 lCd 2 NI1  n (C d
d I t~x B0 V j+\tIdj+2 1 V j+2

xn+1 xn+1 N 211\

11 21 1 n+1 n1
Ax ( j+2 D 1 1 VF j+1 1 S1

(79b)

at the other end of the linear section. In both cases

VIF 9 (80a)
Cd + Cg

Vg I VF VF Vd (80b)

The source terms, S1 and S29 are the inverse Fourier transforms of

equations (77a) and (77b). All other terms are identical to those of

equations (66) and (67).
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3. COMPARISON WITH BLINE

The comparison problem to be done by BLINE and the differential equa-

tion method was determined by first finding the lumped parameters of a

buried cable at a frequency of 1.45 x l05 Hz. The frequency chosen was

an estimate of the frequency of the pulse which is responsible for the

generation of secondary breakdown. Even though the conductance was non-

zero at this frequency, its effects were ignored. The input parameters

were

c = 5.8 x 10mhos/meter

r, = 6.35 x 10-3 m

r = 8.5 x 10-3 m

E d = 2.3 e farads/m0
% water content of the soil 10%.

At a frequency of 1.45 x 105 Hz, the lumped transmission line parameters

were

R = 1.4878 x 10-1 ohms/m

L = 1.4906 x 10-6 henries/m

C = 4.3379 x 10 10 farads/m.

These parameters were then used as constant R, L, and C for the linear

section of the line to be represented by the differential-equation tech-

nique.

In the sections on either end of this linear region and the entire

cable represented by BLINE, the voltage is divided into voltage across

the dielectric and voltage across the ground; in this case the parameters

are
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R = 1.4878 x 10-1 ohms/m

L = 1.4906 x 10-6 henries/m

A10
Cd = 4.3878 x 10-10 farads/m

Cg = 3.8175 x 10-8 farads/m

where

Cd = 2r ed / tn (rl/r 2)

and C is calculated from
g

[+I-
CgC

Using these parameters and a dielectric breakdown voltage of 10 v/m,

BLINE was run to find the breakdown regions of a 4 km cable. The network

was terminated at the source end by a 10 ohm resistor and at the far end

by a 104 ohm resistor; this mismatch was purposely chosen to enhance

secondary breakdown.

With this input, BLINE predicted a primary breakdown region of 2.6 km

and a secondary breakdown region of 60 m, 4 km from the burst.

The region from 2.8 to 3.8 km remained linear. This was chosen as the

section to be replaced by a line represented by the differential-equation

technique.

To obtain the differential equations, the Prony analysis was done

on the inverse Fourier transforms of the self and transfer admittances.

As in the case discussed in section IV, the admittances were limited to

the terms representing the signals traveling away from the source. The

poles, residues, and impulse terms for the self admittance were
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al = 1.63148 x 102 a2 = 6.88527 x 10
2

s = -2.5697 x 104 s2 = -8.64688 x 104

Impulse = 1.7059 x 10-2.

The terms representing the transfer admittance were

a1 = 1.14429 x 102 a2 = 6.04022 x 101

sI - 20423x 104 2 = -1.421511 x 10
, Impulse = 9.5908 x 10

- 3

t JAs in the previous case (section IV.2), a satisfactory fit was achieved

for both admittances with two poles and residues. Because the breakdown

phenomenon involves longer cables, the Prony fits were found to a time of

60 lis.

The computation of the source terms was done in the frequency domain

and inverse Fourier transformed at times that could be directly utilized

by the time-domain code at the two junction points.

To compare the two processes, observations were made of the dielectric

voltage at the two junction points, 2.8 km and 3.8 km along the cable, and

at the end of the line where secondary breakdown was expected. Because

the primary breakdown region is essentially described by the same coding,

no differences in this region were found between the two predictions.

Figure 8 shows the responses predicted at the junction of the primary

breakdown region with the linear section of cable. The dotted line (at

70 ps), in this figure and the following two, is the limit to which the

Prony approximations of the admittances were made. At larger times, an

extrapolation is indicated. In figure 8, the variation between the pre-

dicted responses at 80 Psec, is the result of a reflection from the end

of the cable; because only signals traveling from the source were handled

by the differential equations, the reflection is not seen with this analy-

sis. Figure 9 compares the response predicted by BLINE 3.8 km from the
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source with the response generated by the differential equations. The

last comparison between the two approaches is shown in figure 10. This

shows the predicted responses at the end of the cable 4 km from the source.

The oscillations are due to reflections off the end of the cable and the

secondary breakdown region.
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- I
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0 xl 2O 0 6 B10
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Figure 10. Dielectric Voltages Predicted by BLINE and the Differential

Equation Technique at the Cable Termination
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The starting time and extent of secondary breakdown predicted by the

two methods are

Time Extent

BLINE 49.54 us 40 m

Diff. Eqn. 49.34 .is 60 m

The earlier time and greater extent of secondary breakdown predicted

by the differential equation approach is probably a result of a more

accurate representation of the propagation of the pulse through the 1 km

linear region. A similar difference in pulse propagation was shown in

the coaxial line comparison in section IV.4.
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SECTION VI

CONCLUSIONS AND RECOMMENDATIONS

1. CONCLUSIONS

Two methods have been employed to represent a linear section of cable

between the regions capable of describing nonlinear behavior.

The two methods employ a relationship between the currents and voltages

at the ends of the linear section. The first uses convolution integrals

to relate the frequency-domain response of current and voltage and presents

the relationship in the time domain. The disadvantage of this approach

is the necessity of the calculation of convolution integrals at each time

step. The second approach recognizes that the convolution integrals in

this case are the solutions of differential equations. Once the differential

equations are obtained, each time step requires the addition of one incre-

ment to the differential-equation solution rather than the calculation of

an entire convolution integral.

The use of convolution integrals has shown the ability of this method

to describe the self and transfer admittances of a lossless line and account

for the reflections of pulses in the network.

The differential equation method has satisfactorily described the prop-

agation of a pulse through a 1 km section of coaxial cable. In all prob-

ability, the pulse exiting the cable described in this manner is closer to

reality than the pulse described by a pure time-domain approach.

This procedure has also been used to predict the secondary breakdown

occurring in a buried cable 4 km in length. The time and extent of the pre-

dicted nonlinearities and the breakdown described by BLINE are essentially

in agreement.
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2. RECOMMENDATIONS

The use of constant R, L, G, and C parameters to describe the linear

section is most likely inadequate for most applications. However, the

use of frequency dependent parameters to describe the admittances is dif-

ficult because of the lack of well defined impulse behavior. It is rec-

ommended that further study be made of the three media problem to determine

the high frequency limits of the self and transfer admittances of a linear

transmission line.

The technique of using differential equations to describe convolution

integrals can be applied to each spatial cell of a nonlinear time domain

code to achieve a significant increase in the predictive capability of such

a code. This coupled with the previous recommendation would enable the

time-domain code to be as accurate as a frequency-domain code but still

enable it to describe nonlinearities.

An easily achieved improvement on the present use of differential

equations in this report is the addition of soil conductivity to the pro-

cedure. A simple relationship between the total voltage propagated by

the linear section and the dielectric voltage needed at the junction to

the nonlinear section is
3Vd

(Gd+Gg) Vd + (Cd+Cg) t - GgV + Cg -

where the d and g subscripts refer to the dielectric and ground respectively

and V is the total voltage, Vd+Vg*
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